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Overview

Motivation and Context.
Some Experimental Observations.

Theoretical Considerations.
Correlating parameter;

Plasticity induced crack closure;

Computational approach.

Grossly plastic deformation;

Strain gradient (notch plastic zone).

Applications.
. Crack growth through residual stress field.

Conclusions.
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Motivation and Context

Improvement over current engineering
practice in life prediction

Prognosis Health Management
Integrated Detection and Assessment

Fracture / Fai:igue Mechanics

7 : R
Detection G I
— Find damage "OGP@(O automation
— Locate and identify -

—  Quantitative characterization, input to Assessment
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Motivation and Context

A brief history:

1955: First paper on fatigue crack growth using dislocation

theory by Dr. Alan Head.
1995: Long crack well understood and predictive tools

(FASTRAN by Jim Newman).
2015: Adaptive, 3D computational crack growth?

Challenges:

1. Correlating parameter for small cracks (=10 pm).

2. Crack closure (plasticity and surface roughness induced).

3. Scale effect (crack size relative to microstructure dimension).
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“fatigue crack growth modelling”

initiation crack growth

)

fracture
mechanics
(accumulation)

Fatigue Life
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Some Experimental Observations
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Some Experimental Observations
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Some Experimental Observations

Mild carbon steel Alloy
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Crack growth rate (umfcycle)
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half surface crack length a (jn) Crack length (pm)

Failure of Stress Intensity Factor to Correlate Crack Growth Rates
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Correlating Parameter

\ Constant K
Constant da/dN

/

Air Vehick Division

Crack length

(i) Failure of similitude
(if) Failure of continuum hypothesis
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Correlating Parameter

Stage II growth by plastic blunting at crack tip (Laird, 1967)
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Correlating Parameter for Small Cracks

Cyclic Crack-tip Plastic Bunting
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Tip of imitial crack
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Modified Crack Closure Solution

J  Simulating three-dimensional plastic deformation near
crack tip using two-dimensional Dugdale model.

Two plastic constraint factors.
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Modified Crack Closure Solution

J  Two plastic constraint factors: determined by matching
analytical and FE solutions.

J  Input to modified FASTRAN for spectrum loading.
1.8

Plane strain crack
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J  Small crack emanating from notch plastic zone

= Cyclic Notch Plasticity

* Small Cracks
— Non-S8Y
— Plastic Strain Controlled
— Microstructure
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Strain Gradient Effect

Applied Strain Elasto-plastic Stress

Stress-based Dugdale Models 1 & II
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Strain Gradient Effect

Front face yielding
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Strain Gradient Effect

Strain-based Dugdale Model

I D()O(x, I)df—{[_ 50 X)/E’ (O<x<a)

(x)+o,))/E’ (a<x<c,)

. y ]’ g, (x) (0<x<a)
|” (t)Q(rt)z_l_ i) (@<x<c)

E (%)= o'@(x) /Egp(x)
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~ Strain Gradient Effect

Load history of pre-straining ¢

crack 1s cut
at this point

.
tume
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Strain Gradient Effect
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[ Symbols: Fuute element results
[ Curves: strain-based Dugdale model
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Crack Growth Through Residual Stress Field

Surface enhancement techniques
J Shot peening
- Laser shock

: Low plasticity burnishing

No credit is taken of the benefit of residual stresses
Quality assurance.

Stability of residual stresses under mechanical or thermal
loading.

Fatigue crack growth: influence of flaws.
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Experiments

-

Aluminum alloy (7050)
. Etched

(J  Shot peened

Loading
J FALSTAFF
(J  Modified sequence representative of F/A-18
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Experimental Results

F/A-18 sequence FALSTAFF

Folished i ' ; i |#Unpeened (etched)
Ungp eened {etched) | 3 i ' # Fooned
Shot peened 1

Peak Stress {MPa)
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i Crack Growth Results

Un-peened Shot peened
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Fractographic Results

Un-peened

Shot peened
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Fatigue Crack Growth Prediction

J  Correlating parameter;

. Cyclic crack-tip opening displacement.
J  Cycle-by-cycle crack closure analysis;

. Effect of residual stress.

- Modified Dugdale model (e.g., FASTRAN).
d Material database;

. da/dN .vs. correlating parameter (threshold for small
cracks).

d Initial flaw size;

J Fractographic analysis.
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RESIDUAL STRESS
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Initial Flaws due to Shot Peening

. N SCIEMCE & TECHMNDLOGY
LA




&

* &
DEFENMNCE e i S
Q SCIENCE & TECHNOLOGY Air Vehick Division
-

Stability of Residual Stresses

Stress shake-down:
. Elastic shake-down: zero alternating plasticity.

A Plastic shake-down: alternating plasticity (zero mean
stress).

Compressive residual stress

. High compressive load may cause elastic or plastic shake-
down.

Rate of shake-down depends on material properties and
applied loads.
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Relaxation of Residual Stress

Perfectly plastic | .40 MPa (g, --320 MPa)
matenal

| Final residual stress
at zero load

7
s
g
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Initial residual stress

Siress at the minimum
applied load

0.1 0.2

Distance from surface (mrn)
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Cyclic Deformation
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Relaxation of Residual Stress

Non-linear
Kinematic hardening

- Cyclic yield stress g =338 MPa
- Non-linear hardening parameters:
i = 73970 MPa
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Distribution of Initial Flaws
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Material Database

Threshold value 1s determined so that the mnitial flaw
does not propagate at fatigune limit.

Input: |
(1) Flaw size 7050-T 7451
(2) Fatigue limit '

short crack

(AK, ~0.6 MPa V¥m)

da/dN (m/cycle)

L Long crack data
e

=1.8 MPa+m)

(AK ;o

1, ; i
2 3 10

AK . (MPa¥m)
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Threshold Determination

Semi-elliptical surface crack
(ci=2 a, , o= 15 pm , kizl jLm )
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| Influence of Residual Stress on Crack Growth
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Crack Growth Curves
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Comparison of Prediction with Experimental Data

- Dpen symbols: un-peened
- Filled symbols: shot—peengd
. Lines: predictions

10 20 o0
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Summary

[ Correlating parameter for short crack growth.

J  Strain-based cohesive zone model for strain-controlled
crack growth at notch root.

Modified crack closure model for large-scale yielding.

Analytical method for characterizing the relaxation rate
and the final distribution of residual stresses.

Predictive tools for assessing effect of surface
enhancement.




